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Abstract

Neural networks trained using gradient-based optimization methods exhibit
a surprising phenomenon known as mode connectivity, where two inde-
pendently trained network weights are not isolated low loss minima in the
parameter space. Instead, they can be connected by simple curves along
which the loss remains low. In case of linear mode connectivity up to
permutation, even linear interpolations of the trained weights incur low
loss when networks that differ by permutation of their hidden neurons are
considered equivalent. While some recent research suggest that this implies
existence of a single near-convex loss basin to which the parameters converge,
others have empirically shown distinct basins corresponding to different
strategies to solve the task. In some settings, averaging multiple network
weights naively, without explicitly accounting for permutation invariance still
results in a network with improved generalization. In this thesis, linear mode
connectivity among a set of neural networks independently trained on labelled
datasets, both naively and upon reparameterization to account for permutation
invariance is studied. Specifically, the effect of hidden layer width on the
connectivity is empirically evaluated. The experiments are conducted on a
two dimensional toy classification problem, and the insights are extended to
deeper networks trained on handwritten digits and images. It is argued that
accounting for permutation of hidden neurons either explicitly or implicitly is
necessary for weight averaging to improve test performance. Furthermore, the
results indicate that the training dynamics induced by the optimization plays a
significant role, and large model width alone may not be a sufficient condition
for linear model connectivity.

Keywords

Mode Connectivity, Representation Learning, Loss Landscape, Network
Symmetry
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Sammanfattning

Neurala nitverk som trdnats med gradientbaserade optimeringsmetoder
uppvisar ett Overraskande fenomen som kallas modeconnectivity, dar
tvd oberoende trinade nétverksvikter inte dr isolerade l&gforlustminima i
parameterutrymmet. Istillet kan de kopplas samman med enkla kurvor langs
vilka forlusten forblir 1dg. I hindelse av linjar mode-anslutning upp till
permutation medfor dven linjdra interpolationer av de trinade vikterna ldga
forluster nir nidtverk som skiljer sig 4t genom permutation av deras dolda
neuroner anses vara likvirdiga. Medan en del nyare undersokningar tyder pa
att detta innebdr att det finns en enda néra-konvex forlustbassing till vilken
parametrarna konvergerar, har andra empiriskt visat distinkta bassinger som
motsvarar olika strategier for att 10sa uppgiften. I vissa instillningar resulterar
ett naivt medelvirde av flera néitverksvikter, utan att uttryckligen ta hdansyn till
permutationsinvarians, fortfarande i ett natverk med forbéttrad generalisering.
I den hir avhandlingen studeras linjairmodsanslutningar mellan en uppséttning
neurala nidtverk som dr oberoende trinade pd mairkta datamidngder, bade
naivt och vid omparameterisering for att ta hinsyn till permutationsinvarians.
Specifikt utvirderas effekten av dold lagerbredd pa anslutningen empiriskt.
Experimenten utfors pa ett tvidimensionellt leksaksklassificeringsproblem,
och insikterna utokas till djupare nétverk som tridnas pd handskrivna siffror
och bilder. Det héavdas att redogorelse for permutation av dolda neuroner
antingen explicit eller implicit dr nodvindigt for viktgenomsnitt for att
forbittra testprestanda. Dessutom indikerar resultaten att traningsdynamiken
som induceras av optimeringen spelar en betydande roll, och enbart stor
modellbredd kanske inte ar ett tillrickligt villkor for linjar modellanslutning.

Nyckelord

Lagesanslutning, representationsinldrning, forlustlandskap, nitverkssymmetri
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Chapter 1

Introduction

This chapter provides a brief introduction to the optimization landscape of
neural networks, along with the main research questions and contributions
of the thesis. After demarcating the scope of this work, it concludes with a
general outline of the report.

1.1 Overview

Neural networks continue to grow as a dominant paradigm of modelling
both structured and unstructured data, yet their unreasonable efficacy remains
unexplained. Despite often being overparameterized and trained to fully fit
a set of noisy training samples, these models exhibit strong generalization
performance that classical learning theory would not predict. Consequently,
ongoing efforts are focused on understanding the generalization of neural
networks from various perspectives. One approach involves studying the
properties of their loss landscape.

Modern neural networks have millions of trainable parameters, resulting
in a high-dimensional parameter space, also referred to as the weight space.
The loss function that maps the model parameters to a real value measuring
success on a task is often non-convex. Therefore, numerical methods involving
local gradient-based optimization are used to estimate these parameters. This
process has multiple sources of stochasticity, ranging from the choice of
initial parameter values to the number of training samples used to estimate
the gradient and the order of the training samples. Changing the random seed
results in different network weights that are far apart in the weight space, yet
they all share a high and near identical test accuracy. Probing the weights
along a linear path between two networks shows that they are separated by a
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large loss barrier, creating an image of these solutions being isolated pockets
of low loss in the weight space, as depicted in Figure 1.1a. However, mode
connectivity is a surprising phenomenon where solutions obtained through
variants of gradient descent can be connected by simple curves in the weight
space along which the loss remains low. This is entirely counterintuitive,
as the predominant symmetry in neural networks is permutation invariance,
where the neurons of a hidden layer can be permuted along with suitable
rearrangement of their incoming and outgoing weights while preserving the
function being computed exactly. Since the permutation group consists of
discrete elements, this would typically inhibit any continuous transformation
of a solution that could result in a different but equally good solution. Yet such
continuous paths of low loss solutions are empirically shown to exist on the
loss surface of neural networks, as illustrated in Figure 1.1b

Random plane

107!
4 of
L] L]
1073
A 10-5

(a) Visualization of the high dimensional test loss surface along a random plane which
passes through two independently trained network weights. They are isolated from
one another by a large loss barrier

$S07

Connected plane

10!

107!

ss07

1073

107>

(b) Visualization of the same loss surface but now through a plane on which the two
network weights are found to be connected by a low-loss valley

Figure 1.1: Illustration of mode connectivity on the loss surface
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1.2 Problem

A special case known as linear mode connectivity (LMC) is observed when
accounting for the permutation invariance of sufficiently wide neural networks
optimized through gradient based methods. Reparameterizing the networks by
a suitable permutation of hidden neurons along with their weights results in a
low loss along the linear path connecting them in the weight space. See figure
1.2 for an illustration. This has led to speculations that the loss landscape,
accounting for permutation, contains one near-convex basin to which the
solutions found through conventional training methods converge. Exploring
this may help better understand the geometry of the loss landscape and shed
insights on neural network generalization.

1.2.1 Research questions

In this work, we analyze the influence of reparameterization for permutation
alignment on the loss neighbourhood of network weights. Specifically, we are
interested in how the loss varies along the line connecting different trained
network weights before and after reparameterization. These are presented
in Section 4.1 and Section 4.2 respectively. By quantifying the increase
in loss along the path by ¢, as defined in Section 2.1.2, we investigate if
such reparameterization is necessary and sufficient for the average network
to incur low loss, in Section 5.1 and Section 5.2. Lastly, we relate linear
mode connectivity up to permutation and the weight averaging methods used
in practice, by explaining the success of Stochastic Weight Averaging (SWA),
a popular method where no explicit permutation alignment is done. This is
discussed in Section 4.3.

1.2.2 Contributions

Through experiments done on fully connected networks trained using the
two-Moons, MNIST and CIFAR-10 datasets and reparameterizing them for
permutation alignment, the following empirical results are presented by the
thesis.

* The loss incurred by naive averaging of network weights decreases as
the hidden layer width increases, but this is only due to the feature
redundancy in the hidden neurons.

* In narrow networks, the loss incurred on averaging the weights after
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(a) Visualization of the test loss surface along a plane passing
through three network weights independently trained on the Moons
data. They appear to be isolated minima
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(b) Network weights 6p and 6o are reparameterized to be
permutation aligned to 64. Now the visualization of the test loss
surface passing through the three new network weights reveal the
solutions to be linearly mode connected

Figure 1.2: Illustration of linear mode connectivity up to permutation
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reparameterization for permutation still remains high, indicating that
the network weights converge to diverse loss basins up to permutation.

* In wide networks, the loss incurred on averaging the weights after
reparameterization significantly reduces, but this is dependent on the
choice of optimizer, indicating that such reparameterization alone is not
sufficient to observe LMC up to permutation.

» Weight averaging methods improve the test accuracy of the final average
network as the sample networks are implicitly permutation aligned and
linearly mode connected from sharing parts of their training trajectory.

1.3 Delimitations

Understanding linear mode connectivity in neural networks is a broad task,
and this work presents a limited exploration. Various network architectures
are developed to suit the natural structure of different data modalities, but
here the experiments are limited to simple fully connected networks trained
on synthetic and vision datasets. A thorough investigation on how well
the conclusions extend to other architectures and domains remains open.
Additionally, only networks trained in a supervised manner are considered,
and the results may not necessarily extend to unsupervised learning. Finally,
reparameterization for permutation alignment uses heuristic algorithms that
do not guarantee an optimal solution. Thus, the failure to find a low-loss
connecting path between networks does not disprove the existence of such
a path, only that the current state-of-the-art methods are unable to obtain
them. In fact, making conclusive remarks requires a brute force search through
all possible arrangements of the hidden neurons, which is computationally
prohibitive for large models.

1.4 Structure of the thesis

Having provided a short overview of the research area, problem statements
and main contributions, the rest of the thesis is structured as below:

 Chapter 2 introduces the preliminaries and related literature.

* Chapter 3 details the data, training procedure and the reparameterization
method to account for permutation invariance in networks.
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 Chapter 4 motivates the experiments and presents their results.
* Chapter 5 presents further analysis on some of the intriguing results.

* Chapter 6 provides the summary and final remarks.
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Chapter 2

Background

This chapter presents an introduction to neural networks and how they are
trained in supervised settings. Following this, the literature related to mode
connectivity, the special case of linear mode connectivity, and studies on
network symmetries are discussed.

2.1 Preliminaries

Suppose that the input space X and output space ) are such that a probability
distribution P on their product space X x ) describes the data distribution.
Say the goal is to create a classifier f : X — ) such that f(X) gives a likely
output. However, we do not have access to this underlying data distribution P,
instead only samples S = {(x;, y;)}_; which are assumed to be independent
and identically distributed (i.i.d.) as P. This set S (or a subset) is referred
to as the training data. The task of learning a classifier is often done through
either empirical or regularized risk minimization. A sample wise loss function
0 X xYxF — Rsqisdefined as the error between an estimate f(X') and the
corresponding target output Y. Typical choices include the squared loss and
cross-entropy loss. The population risk is defined as £ := E(¢(f(X),Y")) and
is approximated by the empirical risk Lg := = > | (¢(f(x;),y;)). Empirical
risk minimization involves choosing a parameterized function fy € F and
estimating 6 which minimizes the empirical risk.

n

0* = arg min % Z(f(fe(xi)a Yi))

o i=1
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In regularized risk minimization, an additional term €2 : F — Ry that
measures the classifier’s complexity is also included in the objective to be
minimized.

n

" = argmin S (¢(fo(r:). i) + o)

=1

Consider input space R% and output space R%, where & > 1. A fully
connected neural network is defined as follows.

Definition 1. A fully connected network is a parameterised function fy :
R% — R% of the form,

for=1Ilgo---0l4
li(x) :=0;(Wix+0b;) for 1<i<k

where 0; : R — R is the activation function which is applied element-wise,
and [; : R%-1 — R% denotes the operation at hidden layer 7. The trainable
parameters 6 := {W; b;|]1 < i < k} constitutes each layer’s weights and
biases. They are often estimated by variants of gradient descent, of which a
simple example is stochastic gradient descent (SGD):

0 = 0" — Vo (U for (), yi))

where «; is the learning rate, the chosen step size for the update at step
t. Starting from a random initialization °, the update is repeated until
convergence and the gradient at each step is evaluated at (z;,y;) which are
uniformly sampled from the training set S.

Suppose a task is specified by the data distribution P and the choice of loss
function /. Given a sample set S, let 6 4 and 65 be the parameters of two neural
networks trained by independent runs of stochastic gradient descent. Note that
these networks may have different initialization and may have been trained on
different ordering of the input data. For convenience, we use 6 to refer to
the function fy and Ls () to denote the empirical risk of the model evaluated
on the sample set S. For a fixed network architecture, sample data, and loss
function, mode connectivity can be defined, similar to that of Kuditipudi et al.
[Kud+19]

Definition 2 (Mode connectivity). Two solutions 64 and 3 are said to be e-
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mode connected if for e > 0 there exists a continuous curve w : [0,1] — ©
such that,
w(0) =04, w(l)=206p,

ﬁg(&)(t)) S max(LS(QA),ES(QB)) + € v 0 S t S 1

For € close to zero, the solutions are simply said to be mode connected. In
many practical settings, neural network solutions obtained through variants of
gradient descent are shown to exhibit mode connectivity.

2.1.1 Model symmetries and invariance

A mapping i : © — F such that u(f) := fy is not injective, meaning that
fo, = fo, does not imply that 4 = Op. This is because the same function
can be parameterized in different ways due to the invariance induced by the
network. A few examples that illustrate this are described below.

Permutation. In fully connected networks, rearranging the neurons within
a hidden layer while adjusting the incoming and outgoing weights accordingly
leaves the output unchanged, but results in a different parameterization. This
also holds in other architectures such as convolutional neural networks, where
the feature maps at a hidden layer can be treated as units that can be permuted
in the channel dimension, but not along their height or width. Denoting the
permutation of each hidden layer as P, € Py, a output preserving transform
7 : © — O for fully connected networks is given by,

m(0) = {PzVVszT_pszz | Po=1gy, P = 14,1 <i <k}

Scaling. For some activation functions, the network may be invariant to
continuous transformations. Consider a layer /; in a fully connected network
with ReLU activation. The incoming and outgoing weights can be positively
scaled without changing the output. Suppose D; € R%* is a diagonal matrix
with only positive elements. The scaling transform p, : © — O that preserves
the output is given by,

pa(0) = {D;W; D}, Dib; | Dy =1y, Dy, =1y, 1 < i < k}

A detailed analysis on the symmetries of 2-layer ReLU networks is given by
Petzka, Trimmel, and Sminchisescu [PTS20] and the invariance induced by
other activation functions are discussed by Godfrey et al. [God+22].

These are not the only output preserving transformations. In some weight
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configurations, such as when all incoming weights of a hidden neuron are zero,
the outgoing weights can be arbitrarily modified without changing the output.
Similarly, if all outgoing weights of a neuron are zero, the inverse holds true.
If two neurons in a hidden layer perform the same computation, their outgoing
weights can be adjusted while maintaining their total contributions. For ReLU
activation, this can be further relaxed as shown by Petzka, Trimmel, and
Sminchisescu [PTS20]. Consider two neurons in a ReLU layer with incoming
weights w;, w;, outgoing weights v;, v;, such that \(w; - © + b;) = W, - & + b,
for some A\ > 0, then changing the outgoing weights as shown below does not
affect the network output for all c.

V, <V, —¢C
C
Vj<—Vj+X

2.1.2 Linear mode connectivity

Linear interpolation between the parameters of two trained networks often
results in a network with low test accuracy. For simplicity, consider two 2-
layer linear networks, denoted as 64 and 0p, with no bias terms or activation
functions. Define a new network 6, := af4 + (1 — «)f0p, where « is between
0 and 1. In the functional space, we have

f9A = W2AW1A
feB = W2BwlB

and therefore, fp, can be expressed as:
AWHWA +a(l — a)(WHWE + WEWA + (1 — )2 (WPWE)

While the first and last terms resemble the trained networks, the others are
combinations of the original weights. Consequently, we can generally expect
such restitched networks to perform poorly.

Definition 3 (Linear mode connectivity). Two solutions 64 and 6 are said to
be linearly e-mode connected if for some € > 0, along the line w : [0,1] — ©
such that,

w(a) ==abs+ (1 —a)fp
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the following inequality holds for all & € [0, 1],
Ls(w(e)) <max(Ls(04), Ls(0p)) + €

Linear mode connectivity has been demonstrated between networks in the
fine-tuning regime [Fra+20], i.e., solutions that are fine-tuned from a common
pretrained model. More recently, it has also been observed between networks
with completely independent training trajectories when the permutation
invariance of their hidden layers is taken into account [AHS23] [Pit+22].

Definition 4 (Linear mode connectivity up to permutation). Two solutions
04 and Op are said to be linearly mode connected up to permutation if there
exists some 0% € [04] and 0%, € [0p] such that 0% and 0% are linearly mode
connected. Here, [f] represents an equivalence class with the relation §; ~ 6,
if and only if there exists a permutation transform 7 such that 6; = m(6;), as
described in subsection 2.1.1.

Definition 5 (Loss barrier). The loss barrier B : © x © — R between two
networks 04 and 6 for a € [0, 1] is defined as:

B(04,05) = max [Ls(abas+ (1 —a)fp) — (als(fa) + (1 — a)Ls(0p))]

Instead of denoting the degree of linear mode connectedness by e, it is also
common to use the loss barrier. Observe that zero loss barrier is a stricter
condition than linear 0-mode connectivity.

2.2 Related work

This section discusses the current literature on mode connectivity with a focus
on the specific case of linear mode connectivity.

2.2.1 Mode connectivity

In 2-layer ReLU networks, before any empirical evidence, Freeman and Bruna
[FB22] predicted that the parameters will be asymptotically mode connected
as the layer width increases. Later, Garipov et al. [Gar+18] demonstrated
this by minimizing the expected loss along a parametric curve that connects
two independent network weights. Concurrently, similar results were shown
by Draxler et al. [Dra+18], where the connecting curves were found using
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the Nudged Elastic Band method [JMJ98]. To explain mode connectivity
in these realistic deep networks, Kuditipudi et al. [Kud+19] used dropout
stability, which requires that predictions do not change by dropping half the
neurons at every hidden layer. This needs to hold for just a fixed dropout
pattern, not any arbitrary one. They proved that all dropout stable solutions
are connected, with the connecting curve being piece-wise linear and its
number of segments growing linearly with network depth. Shevchenko and
Mondelli [SM20] also showed that SGD solutions can be connected by a
piece-wise linear path, and they bounded the increase in loss along the path,
which vanishes asymptotically with the total number of neurons. Going
beyond simple mode connecting curves, Benton et al. [Ben+21] showed that
independent solutions can be connected via volumes of low-loss simplicial
complexes. They did this by sequentially adding a new connecting vertex
that minimizes expected loss within the volume, while a regularizer term in
the objective kept the simplicial complex volume from collapsing to zero.
Lastly, instead of connecting independent solutions, Simsek et al. [Sim+21]
proved that adding just one extra neuron than required at every hidden layer
is sufficient to connect networks that vary just by permutation of their hidden
neurons.

2.2.2 Linear mode connectivity

While previous research had explored piece-wise linear paths connecting
independent solutions, Frankle et al. [Fra+20] discovered a linear, low-loss
path between solutions that share part of their training trajectory. From
the convex hull formed by these connected solutions, Yunis et al. [Yun+23]
contend that it is high dimensional, and uniformly drawn samples from it have
lower loss than the nearest vertex with high probability. They also conclude
that the hull comprises of functionally diverse solutions, as the endpoints
do not agree on their output predictions. Extending beyond solutions which
share their training trajectory, Entezari et al. [Ent+22] hypothesized that
independent gradient descent based solutions are linearly mode connected up
to permutation. Various works that followed, including [AHS23], [Pit+22],
and [Peni+22], have since demonstrated this using a permutation transform
to be applied on one of two given networks, thereby empirically observing
linear mode connectivity. The permutation estimation methods vary from
matching hidden neuron activation, or the weights themselves as a linear
assignment problem, to implicit Sinkhorn differentiation [Eis+22], where the
permutation matrix is relaxed to a doubly stochastic matrix so that gradient-
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based optimization of any chosen loss function can be used. In addition,
Benzing et al. [Ben+22] demonstrated that fully connected networks can be
linearly mode connected up to permutation even upon initialization, and that
the average network performed better than to random. These findings suggest
that there exists one near-convex basin in the loss surface that gradient descent
based solutions converge to.

But to the contrary, other recent works indicate the existence of multiple
basins in the loss surface, even after accounting for permutation invariance.
Ilharco et al. [I1h+22] finetuned a large model on various tasks and consider the
difference between finetuned and pretrained weights as the task vector. They
demonstrated that these task vectors obey simple arithmetic operations, where
adding two task vectors to a pretrained model produces a multitask model.
Moreover, negating a task vector reduces the pretrained model’s performance
on that specific task while preserving its other capabilities. Similarly, Juneja
et al. [Jun+22] found that independent runs of finetuning a large language
model result in solutions that are linearly mode connected within those that
generalize and those that do not, but not across these two groups. It is likely
that in the fine-tuning regime, these models can be considered permutationally
aligned as they share much of their early layer weights. Finally, Lubana et al.
[Lub+22] provided empirical support for the relationship between linear mode
connectivity up to permutation and the mechanistic similarity of networks in
arriving at a prediction.

2.2.3 Model similarity

With the general theme of comparing different trained networks and their
neighbourhood in the loss surface, this subsection briefly discusses some
literature on quantifying the similarity in neural networks. Li et al. [Li+15]
investigated convergent learning in networks, which refers to the extent
to which different neural networks converge to the same representation.
By analyzing the correlation of activation between networks, they showed
that some features are consistently learned across them. Following works
have built upon this to quantify representational similarity using measures
such as SVCCA [Rag+17], projection weighted CCA [MRBI18], CKA
[Kor+19], and deconfounded CKA [Cui+22]. More recently, Moschella et
al. [Mos+22] argued that representations learned by different architectures
are a quasi-isometric transformation of one another. While Somepalli et al.
[Som+22] used decision boundary visualizations to argue that different model
architectures exhibit visually distinguishable boundaries.
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2.3 Summary

While many works have reasoned about the prevalence of mode connectivity
both empirically and theoretically, the assumptions made still leave room for a
better understanding of why mode connectivity occurs in practical networks.
With the notations and definitions established and the research question
contextualized within the current state of research, the following section delves
into the methodology.
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Chapter 3
Methods

This chapter provides details of the data, models, and training procedures,
along with the rationale for these selections. It is followed by the procedure
used to account for permutation invariance. Lastly, it concludes with a
summary of the model zoo on which the experiments are preformed in the
subsequent chapters.

3.1 Data

Most of the experiments are performed with networks trained on one of two
labeled datasets. To visualize the learned features and decision boundaries
of the network, a 2-dimensional toy dataset referred to as Moons is used.
It comprises of two interleaving half circles, each belonging to a different
class. Additionally, to assess the results on less trivial settings, we utilize the
MNIST dataset [Den12] consisting of handwritten digits. Figure 3.1 provides
visualizations of the data.

S|o]-]/]4
EKNEINE]

(a) Sample images from MNIST (b) Data distribution of Moons

Figure 3.1: Visualizations of the labelled training data



16 | Methods

3.2 Model zoo

On the Moons data, 2-layer fully connected networks with varying numbers
of hidden neurons are trained on the same data. The hidden layer uses ReLU
activation, and the output consists of a single node with sigmoid activation.
Keeping the overall complexity low, then 4-layer fully connected networks
with the shape [784, w, w, w, 10] are trained on the MNIST dataset, where w
is the width of the hidden layer. Additionally, Layer Normalization [BKH16]
is applied to each hidden layer. The hidden units use ReLLU activation, and the
final output layer uses softmax activation.

On the Moons dataset, 50 models for each width are trained using
512 training samples over 100 epochs with binary cross-entropy loss. On
the MNIST dataset, 50 models for each width are trained over 60 epochs
using cross-entropy loss. In both cases, the AdamW optimizer [LH17]
is used to perform mini-batch gradient descent with a batch size of 256.
Lastly, cosine annealing of the learning rate is used on Moons, and the
Icycle learning rate policy is used on MNIST. All of the above are
implemented with the standard PyTorch library. The code can be accessed
at https://github.com/Adhithyan8/LMC.

Width Loss Accuracy
train test train test

2 10.264 £0.088 0.284 +0.084 | 0.879 £ 0.074 0.859 £ 0.077

41 0.186 = 0.087 0.206 4 0.092 | 0.920 £+ 0.041 0.903 &+ 0.049

8 10.1054+0.095 0.124 £0.105 | 0.957 £ 0.045 0.941 £ 0.057
16 | 0.019 £ 0.038 0.028 +0.043 | 0.996 + 0.017 0.991 + 0.024
32 | 0.005£0.001 0.012+0.002 | 1.0 £0.0 0.996 + 0.001
64 | 0.003 =0.001 0.009 +0.002 | 1.0 £0.0 0.997 £ 0.001
128 | 0.002 £ 0.0 0.006 +0.001 | 1.0 £ 0.0 0.998 + 0.001
256 | 0.002 £ 0.0 0.005 +£0.001 | 1.0 £ 0.0 0.999 + 0.001
512 | 0.001 £0.0 0.004 + 0.0 1.0 £0.0 0.998 £+ 0.001

Table 3.1: Mean and standard deviation of losses and accuracy computed over
50 networks trained and evaluated on Moons
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Width Loss Accuracy
train test train test

212301 +0.0 2.301 £0.0 0.112 £ 0.0 0.113 £ 0.002

4 1 0.660 £ 0.047 0.690 & 0.056 | 0.803 £ 0.017 0.798 +0.018

8 10.172 £0.007 0.225 £ 0.010 | 0.950 + 0.002 0.938 £+ 0.003
16 | 0.040 = 0.002 0.134 +0.008 | 0.989 4+ 0.001 0.966 + 0.002
32 |1 0.003 £0.0 0.120 £ 0.010 | 0.999 + 0.0 0.978 £+ 0.002
64 | 0.001 £0.0 0.108 £ 0.008 | 1.0 £0.0 0.983 £ 0.001
128 | 0.0 0.0 0.102 £0.009 | 1.0 £0.0 0.985 + 0.001
256 | 0.0 £ 0.0 0.102 £0.009 | 1.0 £0.0 0.985 £+ 0.001
512 |1 0.0+ 0.0 0.111 £0.009 | 1.0 £0.0 0.985 £+ 0.001

Table 3.2: Mean and standard deviation of losses and accuracy computed over
50 networks trained and evaluated on MNIST. Networks of width 2 are under-
powered and perform close to random

3.3 Permutation alignment

Generally two independently trained networks are not linearly mode
connected. To evaluate if they are linearly mode connected up to permutation,
all permutations of their hidden neurons and loss along their pairwise
connecting line should be considered, in principle. However, this becomes
computationally infeasible when the hidden layer has a large number of
neurons. For instance, a hidden layer with m units has m! permutations,
and if the network has k hidden layers, that is k - m! total configurations
to consider. So instead, a greedy approach of selecting one model as the
reference and permuting the hidden neurons of the others is chosen. The
goal is to align the neurons such that the new weights are in the same basin,
and thus are linear mode connected. Estimating this target permutation is
a challenging task for which no method currently available guarantees an
optimal solution. One approach involves implicit Sinkhorn differentiation
[Pen+22], to estimate a permutation that minimizes a chosen cost function
through gradient descent, such as the expected loss along the line connecting
two network weights. However, this requires extensive hyper-parameter
tuning, and the results obtained were sub-optimal. In this thesis, a much
simpler heuristic method called weight matching [AHS23] is used. It aims
to find the optimal permutation by minimizing the Frobenius norm between
the weights of two networks. For example, considering two 2-layer networks
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with no bias terms, the permutation P sought is as follows:

arg;nin (Wt = PWEIG + W5t — WP PT13]

_ argmin | (Wit = PWEYE (W — PWP))
P |+ (W = We PHT(Ws = W PT))
't whH'wit — (Wi PwP
, — (W PTW + (WP PTPWE
= argmin
P . wh'wit — (wh"w Pt
— PWEYTW + POWBYTWE PT
[ . WwhHTPWE + (WP PTw
= arg min + (WMHTWEPT + POWEY W ) | Jas PTP =1
P
|+t (P(W)TWy PT)
: PWB( N 4 PTWAWE)T
— arg max I
5 PT(WATWE + PWE) W

= argmax 2 (tr ( PWHT + PWLYTWSY)) as r(A”T) = t(A)
P
T

= arg}r)nax tr( ( 1A(W13 + (W2A)TW2B))

= argmax (P, W (W2 + (WHT W), as (A, B)p = tr(ATB)
P

For the 2-layer neural networks, optimal permutation can be solved as a linear
assignment problem (LAP). However, for deeper networks where multiple
hidden layers may need to be permuted, it is no longer a linear assignment
problem and estimating the permutations are shown to be NP-hard [AHS23].
To address this, the layers are iteratively aligned using their incoming and
outgoing weights, as well as biases, with an LAP solver until convergence is
reached. In the context of this thesis, a fixed number of iterations per layer,
specifically 50 iterations, is used as the stopping criterion for weight matching.

To align 50 networks, the first network is chosen as the reference without
loss of generality. Then, the weights of the remaining networks are permuted
using weight matching. This new set of reparameterized networks are
considered to be permutation aligned.
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3.4 Stochastic Weight Averaging

To understand how weight averaging improves performance and its relation
to permutation alignment, Stochastic Weight Averaging (SWA) [Izm+18] is
chosen as the method to be studied. The idea is to average the weight iterates
near the end of the gradient descent trajectory while maintaining a constant or
cyclic learning rate. The rationale is that these weights correspond to various
well-performing networks, and their mean is likely to reside in a wide minima
of the loss surface. This method has been empirically shown to improve
generalization in various network architectures and data modalities. Figure
3.2 provides an illustration of this idea.

Test error (%)

>50
30 ' l 50
W>

35.97

20
28.49

24.5
10

22.38

21.24

20.64

-10 I
19.95

-10 0 10 20 30 40 50

Figure 3.2: Illustration of Stochastic Weight Averaging depicting the samples
and the averaged network on the loss surface. Figure is adapted from Izmailov
et al. [Izm+18]

In this thesis, a trained network is randomly chosen from each hidden layer
width and further trained for 20 epochs using a constant learning rate. At
the end of each epoch, the network weights are saved as the SWA samples.
Subsequently, linear mode connectivity among these samples and the averaged
model is studied.

3.5 Summary

Having described the network architectures, the training data, and the method
for permutation alignment, the next chapter begins with examining the loss
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along naive interpolations of network weights before any weight permutations.
This is compared with loss along permutation aligned networks to investigate
if they are linearly mode connected up to permutation. Finally, similar
experiments are done on SWA samples to understand weight averaging.
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Chapter 4

Results

This chapter presents the results from measuring the loss along interpolations
of trained network weights before and after reparameterization for permutation
alignment. To quantify linear mode connectivity, we utilize the e measure, as
introduced in Section 2.1.1. Based on these observations, further analysis to
explain interesting trends is given in the subsequent chapter.

4.1 Naive weight interpolation

To assess linear mode connectivity between independently trained networks,
the loss along the connecting line for all pairs of network weights is calculated.
The test loss along is considered as there are no significant differences if the
train loss is used instead. The loss is computed at 11 equally spaced weights
0, = @l + (1 — a)fp by varying « from zero to one. The € loss is computed
as,

€ = max Ls(0,) —max(Ls(0a),Ls(0B))

The distribution of € against the network widths for both datasets is depicted
in Figure 4.1. The z-axis denoting the hidden layer width is on the logarithmic
scale.

In Figure 4.1a, networks with a hidden layer width of 2 appear to be linearly
mode connected. However, this is misleading because these networks perform
no better than random, as shown in Table 3.2. Both the trained networks
and their linear interpolations yield high losses, resulting in an e value that
is close to zero. Interestingly, € decreases with increasing hidden layer width
for networks trained on both datasets. This is counterintuitive, considering the
theoretical insights shared in Section 2.1.2. To understand this, the loss along
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&-LMC on moons

€ - test loss

2! 22 2
Hidden layer width

(a) e-loss between networks trained on Moons. The networks are more
linearly mode connected with increasing hidden layer width

&£-LMC on MNIST

Wi,
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Hidden layer width
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€ - test loss
o

N

‘ e
28 2°

(b) e-loss between networks trained on MNIST. Again linear mode
connectedness increases with hidden layer width

Figure 4.1: Distribution of e-LMC under naive interpolations of network
weights for different hidden layer widths
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the linear interpolations is visualized between all pairs of trained networks for
both Moons and MNIST. The y-axis is scaled differently in each subplot.

Hidden layer width 2 Hidden layer width 4
1.6 25
1.4
2.0
1.2
w w 15
w w
o o
i @
K, 1.0

0.0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a a
Hidden layer width 32 Hidden layer width 512
0.40
1.4 0.35
12 0.30
1.0 0.25
2 I
S 0.8 2 0.20
% k]
@ ® 015
0.10
0.05
0.00
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
a a

Figure 4.2: Loss along the lines connecting network pairs trained on Moons.
Point-wise median and the Q1, Q3 quartiles are highlighted in red, and the
subplots are zoomed in for large widths. The average network is slightly worse
for large hidden layer widths.

While the distributions in Figure 4.1 do not immediately reveal this, upon
closer examination, it is apparent that the average of two trained networks
does perform worse than either of the individual networks. However, what is
surprising is that the performance is still remarkably good. Additionally, for
wide networks, some values of « result in interpolated networks that achieve
even lower loss than the trained networks, as shown in Figure 4.3. To explain
the low loss of naive averages, decision boundaries and features learned by the
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Figure 4.3: Loss along the lines connecting network pairs trained on MNIST.
Point-wise median and the Q1, Q3 quartiles are highlighted in red, and the
subplots are zoomed in for large widths. The average network is slightly worse
for large hidden layer widths.
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networks are analysed in the subsequent chapter. The key finding is that the
low loss value of average networks is due to the redundancies present in the
features represented at the hidden layer. So the averages are likely to maintain
their performance even without explicit permutation alignment. However, this
effect diminishes when the networks are pruned to reduce such redundancies.

4.2 Permutation aligned networks

Now, to explore if the trained networks are linearly mode connected up to
permutation of hidden neurons, assume that the optimal permutation with
respect to a reference can be found through weight matching. As described
in Section 3.3, using a random network as the reference, the other network
weights are permuted. The € loss from pairwise linear interpolation of aligned
networks is measured on both datasets. The results are depicted in Figure 4.4,
where the x-axis is on a logarithmic scale.

The median € loss among reparameterized networks is consistently lower
than that among the originals, regardless of the hidden layer widths. Note that
the 4-layer networks with a width of 2 trained on MNIST have € values close
to zero, which is due to them performing only slightly better than random, as
explained earlier. These reductions in € are further emphasized in Figure 4.5.

On the moons data, narrow networks have the mode of the e distribution
close to zero. However, there is a long tail, indicating that some networks are
not linearly mode connected even up to permutation of hidden neurons. This
suggests there may be clusters of networks that are linearly mode connected
up to permutation among themselves but not between them. Conversely, for
narrow networks trained on MNIST, the median € is much larger than zero,
and such clusters with linear mode connectivity up to permutation appear to
be non-existent. To explicitly bring out these clusters, the € loss is treated
as a measure of similarity between networks. When ¢ is close to zero, it
implies the network pairs learn similar features up to permutation of hidden
units. Conversely, larger e indicate that the features cannot be matched, and
the networks are diverse. They may produce similar outputs but do this by
evaluating dissimilar features. But € is not a true metric as it does not obey the
triangle inequality. To compute the clusters, hierarchical clustering with the
single linkage method is done on the pairwise € matrix. The results are shown
in Figure 4.6. In both, the network with index O is the reference to which the
others are aligned, and is marked on the axis. The colors are scaled such that
zero € is the minimum and the mean test loss of the networks is the maximum.
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(a) e-loss between networks trained on Moons after reparameterization
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(b) e-loss between networks trained on MNIST after reparameterization

Figure 4.4: Distribution of e-LMC up to permutation by interpolating
reparameterized network weights for different hidden layer widths. Linear
mode connectivity improves upon reparameterization for permutation
alignment
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Figure 4.5: Box plot of e-loss from linear interpolations of trained networks
compared to networks reparameterized for permutation alignment. Outliers
are omitted from the plots. Reparameterization reduces the loss barrier

As expected, in Figure 4.6a narrow networks trained on moons form clear
clusters, corresponding to the different features or half-spaces learned for
the classification task. However, for narrow networks trained on MNIST,
no such prominent clusters are seen. Most networks are not linearly mode
connected up to permutation, indicated by low € being mostly along the
diagonal. As the hidden layer width is increased, we do observe multiple
minima up to permutation that the gradient descent solutions converge to, as
seen in Figure 4.6c. Interestingly, in Figure 4.6d the networks appear to be
linearly mode connected up to permutation with the reference network, but
not among themselves, from by the clear horizontal and vertical line. This
seems to be an artifact of how the permutation is found. The weight matching
algorithm is based on a heuristic that closeness of reparameterized network
weights in an Euclidean sense would give the optimal permutation, but this is
an arbitrary choice. And for deeper networks, the greedy approach to finding
the permutation of each hidden layer may also result in a sub-optimal outcome.

In wide networks, as shown in Figure 4.6f for MNIST and Figure 4.6e for
moons, nearly all trained networks appear to be linearly mode connected up
to permutation. Why do all these networks appear to prefer just one minimum
(up to permutation) among the many that could yield similar performance?
To further explore this, we focus on the training dynamics, specifically the
influence of weight initialization and choice of optimizer in the next chapter.



28 | Results

0.0000

(e) Moons: width 512 (f) MNIST: width 512

Figure 4.6: Pairwise € loss between reparameterized networks trained on
Moons (left) and MNIST (right) after reordering the indices with hierarchical
clustering. Colors are scaled such that the mean test loss is the maximum. The
reference network to which others are aligned is highlighted on the axis
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4.3 Understanding SWA

Instead of averaging independently trained networks, Stochastic Weight
Averaging (SWA) uses weights along the end of the training trajectory, and
averages them to produce a single network with improved test loss compared
to any individual weight. Does this result in samples that are implicitly
permutation aligned? Or does the average network only appear to be good
due to feature redundancies like in the case of naive averaging? The loss
neighborhood of these SWA weight samples are probed to check for linear
mode connectivity by considering pairwise linear interpolations.

One network each from hidden layer widths of 8, 16, 64, and 512, trained
on MNIST is randomly chosen. They were originally trained for 60 epochs.
Starting from this weight, training is continued for 10 more epochs at a high
learning rate of 0.05. After each epoch, the network weights are saved and will
be used as SWA samples to be averaged. In Figure 4.7, the test losses of both
the individual weight samples and the running average model is presented.

Except in narrow networks, Stochastic Weight Averaging (SWA) obtains
a final network with lower test loss. However, the individual weight samples
perform as good as the original trained network or at times worse, as seen
in Figure 4.7 for hidden layer width 16. Without any reparameterization for
permutation alignment, the test loss along pairwise linear interpolations of the
samples is measured. If a large € value is observed, it may suggest that these
samples are from diverse minima, and the low loss of the average network is
due to feature redundancies.

But to the contrary, Figure 4.8 shows that even the pairwise averages often
incur a lower test loss than the individual pairs. So the samples are often
from the same loss basin, as e values are close to zero, with few outliers.
This suggests that the weight samples obtained through Stochastic Weight
Averaging (SWA) are from a near convex basin in the loss landscape and
are implicitly permutation aligned from sharing most of their initial training
trajectory.
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Figure 4.7: Test loss of SWA weight samples and the running average network
evaluated on MNIST for different hidden layer widths. The individual samples
are always worse than the their average



0.20

Test loss

0.15

0.10

0.18

0.16

0.14

012 |

0.10

Test loss

0.08

0.06

0.04

Hidden layer width 8

0.2 0.4 0.6 0.8
a

Hidden layer width 64

0.2 0.4 0.6 0.8

Test loss

Test loss

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.18

0.16

0.14

0.12

0.10

0.08 =

0.06

0.04

Results | 31

Hidden layer width 16
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Figure 4.8: Loss along pairwise linear interpolations of SWA weight samples
evaluated on MNIST. The point-wise median loss and the Q1, Q3 quartiles are
highlighted in red. Even pairwise averages incur lower loss than the original

networks
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Chapter 5

Analysis and Discussion

From the last chapter, the results that warranted further investigation, are
explored in the sections that follow. Specifically, understanding the loss low
obtained by naive averages and experiments to verify if wide networks always
converge to the same minima up to permutation are discussed.

5.1 Understanding naive weight averaging

The naive average of two trained networks, without any reparameterization,
was shown to produce an average network with relatively low loss, particularly
when the hidden layer width is large in Section 4.1. The decision boundary
of the networks and the hyperplanes computed at each hidden neuron are
visualized to understand how they partition the input space. As a reminder, the
Moons dataset consists of two-dimensional inputs, and the networks trained
on this dataset have one hidden layer. The visualizations for a random pair
of trained networks are shown in Figures 5.1 for narrow and wide networks
respectively.

As seen in Figure 5.1a, moving from one network weight to another
along the connecting line in the parameter space is equivalent to rotating and
translating the hyperplane corresponding to each hidden neuron. Without
explicitly matching these neurons, the average network performs poorly, as
expected.

For the wide networks shown in Figure 5.1b, many neurons appear to learn
the same hyperplane. And the average network only shows a small degradation
in test accuracy. This is potentially due to the redundancy in features computed
by hidden neurons. When a large proportion of neurons in both networks
compute similar features, they are likely to have the same positional index
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Figure 5.1: Decision boundary and the hyperplanes corresponding to hidden
units for a pair of narrow networks of width 4 (left), and wide networks
of width 512 (right) along their connecting line. Many neurons appear to
compute the same features in wide networks.
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even without explicit permutation alignment. So, upon averaging, the learned
features may be preserved, enabling the average network to retain some
classification power. To test this hypothesis, a network of width 512 is
randomly chosen and the pairwise cosine similarity of its hidden neurons are
examined. Specifically, the incoming weights and biases of each neurons are
treated as its vector representation. If many neurons show high similarity
among themselves, it would lend support to the hypothesis. Figure 5.2 presents
the pairwise cosine similarity after hierarchical clustering using the single
linkage criteria.
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Figure 5.2: Pairwise cosine similarity between the features computed by the
hidden neurons of a network with width 512 trained on Moons. z and y-axis
correspond to the positional indices of the neurons after reordering based on
hierarchical clustering. Large clusters of neurons compute similar features

Figure 5.2 qualitatively shows that the neurons indeed compute similar
features, as seen from the clusters based on pairwise cosine similarity. As
an additional test, the feature redundancy is reduced by combining neurons
that learn similar features, and the loss of the average network is calculated.
An arbitrary cosine similarity threshold of 0.99 is used for this purpose.
If the similarity between two neurons, n; and ns, exceeds this threshold,
then they are combined following the guidelines from Petzka, Trimmel,
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and Sminchisescu [PTS20]. If the incoming weights and biases of n; are
proportional to those of ny by a factor of A, then ny, can be removed from
the network by updating the outgoing weights of n; as v; + Avy, where v; and
v, represent the original outgoing weights of n; and ny respectively. After
such pruning, the reduced model sizes and their corresponding test losses are

summarized in Table 5.1.

Configuration Width Test Loss Test Accuracy
Full 2 0.285 £ 0.084 0.859 £+ 0.077
Reduced 2400 0.285 £ 0.084 0.859 £+ 0.077
Full 4 0.206 £+ 0.092  0.903 £ 0.049
Reduced 3.720 + 0.492 0.220 £0.111 0.897 £ 0.056
Full 8 0.124 £0.105 0.941 £+ 0.057
Reduced 7.180 £ 0.865 0.148 £0.126  0.934 £+ 0.062
Full 16 0.028 £ 0.043 0.991 £+ 0.024
Reduced 13.040 £ 1.216  0.057 £0.086 0.979 £ 0.037
Full 32 0.012 £0.002 0.996 £ 0.001
Reduced 23.280 + 1.887  0.045 £ 0.088 0.986 + 0.026
Full 64 0.009 £ 0.002  0.997 £ 0.001
Reduced 39.260 £ 1.598  0.050 £0.111 0.985 £ 0.028
Full 128 0.006 £ 0.001  0.998 + 0.001
Reduced 73.620 4+ 1.340  0.047 £0.122 0.987 £ 0.023
Full 256 0.005 £ 0.001  0.999 £ 0.001
Reduced 141.020 £2.005 0.048 +0.148 0.987 + 0.027
Full 512 0.004 £ 0.0 0.998 + 0.001
Reduced 271.940 £2.176 0.027 £0.052 0.990 £+ 0.019

Table 5.1: Mean and standard deviation of network widths, test losses and
accuracies on Moons dataset after pruning of redundant hidden neurons.
Pruning only results in minor degradation during inference

The reduced networks perform close to that of the originals, with a small
degradation attributed to the arbitrary cosine similarity threshold of 0.99. To
evaluate if these reduced networks are linearly mode connected, the loss along
the pairwise interpolations should be measured. But some pairs have different
hidden layer widths, so in such cases, the narrower network is padded with
neurons that have both incoming weights, biases, and outgoing weights set
to zero. The resulting distribution of € loss between the reduced networks is
shown in Figure 5.3.

The e-loss is now comparable across different network widths after
combining neurons that represent similar features. And the naive average
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Figure 5.3: Distribution of e-LMC under naive interpolations of networks
compared to the networks after reduction in feature redundancy. The loss low
of naive averages is absent once feature redundancies are lowered.

network incurs much higher loss than the original trained networks. This
confirms that naive averaging of independently trained networks appear to
work due to the feature redundancies in the hidden layer.

5.2 LMC in reparameterized networks

In Section 4.2, wide networks trained on both the Moons and MNIST datasets
appeared to be linearly mode connected up to permutation. To verify if
this claim is robust to training dynamics, the weight initialization strategy
and choice of optimizer are varied. If LMC up to permutation is no longer
observed, it may narrow down the factors responsible for this.

Two different weight initialization schemes: Kaiming normal and Kaiming
uniform [He+15], and two different optimizers: AdamW and RMSprop,
are considered. Under each of the four configurations resulting from their
combinations, ten 2-layer networks with hidden layer width of 512 are trained
on Moons. The training procedure remains the same as described in Section
3.2, and the hyperparameters of each configuration are tuned such that they
consistently produce networks with low test low. To ensure comparability, the
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training and test performances under all these configurations are verified to be
high. The train and test metrics are shared in Table 5.2.

Configuration ‘ Train loss  Test loss ‘ Train acc. Test acc.
Norm., AdamW | 0.0 + 0.0 0.003 +£ 0.0 1.0£0.0 0.998 +0.0
Norm., RMSp. | 0.0 £0.0 0.003 £0.001 | 1.0£0.0 0.999 + 0.001
Unif., AdamW | 0.001 0.0 0.003 4+ 0.0 1.0£0.0 0.998 4+ 0.001
Unif., RMSp. 0.0£0.0 0.003 £ 0.0 1.0£0.0 0.999 £+ 0.001

Table 5.2: Norm.: Kaiming normal, Unif.: Kaiming uniform, RMSp.:
RMSprop. Mean and standard deviation of losses and accuracies of networks
with width 512 trained on Moons under different weight initialization and
optimizer configurations.

We use the network with the least test loss, which is trained using Kaiming
normal initialization and RMSprop, as the reference. All the other trained
networks are reparameterized to be permutation aligned to it using the weight
matching method. The test loss along pairwise linear interpolations of aligned
networks is presented in Figure 5.4. If all wide networks with low test loss are
linearly mode connected up to permutation, then we would observe low values
of € loss.

0.06
0.05
0.04

0.03

Test loss

0.02
0.01 P ——

0.00

Figure 5.4: Loss along linear interpolations among reparameterized networks
of width 512 trained with different initialization and optimizers on Moons.
The point-wise median, and Q1, Q3 quartiles are highlighted in red
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From Figure 5.4, while the median € is close to zero, some network pairs do
not appear to be linearly mode connected up to permutation. Considering € as
a measure of similarity as before, the pairwise ¢ matrix between permutation
aligned networks is shown in 5.5. But unlike previous analyses, no hierarchical
clustering is done to reorder the indices.
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Figure 5.5: Pairwise e-loss between reparameterized networks of width 512
trained on Moons with different initialization and optimizers. The colors are
scaled so that the maximum value corresponds to the mean test loss. The
reference network to which others are aligned is highlighted on the axis

On average, the networks trained using AdamW optimizer are more
linearly mode connected up to permutation among themselves than those
trained using RMSprop, irrespective of the initialization scheme. Recall that
all these networks have a low and comparable test loss. This challenges the
claim that all well-trained, wide networks are linearly mode connected up
to permutation, at least under the assumption that the permutation alignment
method works. To explain linear mode connectivity up to permutation, it may
be necessary to explore the weight space dynamics induced by the different
optimizers. To strengthen this result, sensitivity analysis with respect to
the choice of reference network, the hidden unit matching algorithm, data
complexity, and the depth of trained networks are presented.
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5.2.1 Sensitivity to the reference network

The networks were reparameterized to be permutation aligned with the
reference network, which was arbitrarily chosen to be the one with the least
test loss. Given that this was trained under the Kaiming normal and RMSprop
configuration, the experiments are repeated by choosing different references
from each of the three other configurations instead . The test loss along the
linear interpolations of the reparameterized networks are presented in Figure
5.6, and the pairwise € matrix between the aligned networks are in Figure 5.7.
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(c) Reference: Uniform, RMSprop (d) Each pair is aligned to one another

Figure 5.6: Testloss along linear interpolations of aligned networks with width
512 using different reference networks. The point-wise median, and Q1, Q3
quartiles of the loss are highlighted in red
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Figure 5.7: Pairwise e-loss between reparameterized networks trained on
Moons with different choice of reference networks. The colors are scaled
such that the maximum value corresponds to the mean test loss. The reference
network is highlighted on the axis in each subplot, except 5.7d, where each
network pair is aligned to one another
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From the plots, it is evident that the choice of reference network changes
the € connectivity, but qualitatively its effects are not significant. Instead
of choosing a network as the reference and aligning others to it, we also
present an experiment where each pair of network is permutation aligned
before measuring the test loss along the linear interpolation. These results are
depicted in Figures 5.6d and 5.7d. Interestingly, explicitly aligning each pair
of network increases € loss at times. This once again reflects on the heuristic
nature of the weight matching methods, which does not guarantee an optimal
permutation for LMC.

5.2.2 Sensitivity to data and network depth

The previous experiments were performed on simple 2-layer ReLU networks
trained on the Moons dataset. To evaluate if the conclusions extend to more
non-trivial settings, 4-layer ReLU networks with 512 neurons in each hidden
layer were trained on the CIFAR-10 [KH+09] classification task. The input
space is 3072-dimensional, and the output layer has 10 units. The optimizers
considered include AdamW, SGD with momentum, RMSprop, and Adagrad.
Hyperparameters for each of the optimizers are individually tuned, and the
Icycle learning rate policy is used to train the networks for 60 epochs with
cross-entropy loss. For each optimizer, ten networks are trained, and their
average training and testing metrics are presented in Table 5.3.

Optimizer \ Train loss Test loss \ Train acc. Test acc.

AdamW 0.597 +0.005 1.533 +0.015 | 0.810 £ 0.002 0.577 4+ 0.005
SGD 0.691 +0.004 1.362 +0.015 | 0.781 +0.001 0.579 + 0.004
RMSprop | 0.560 + 0.004 1.509 + 0.016 | 0.819 4+ 0.001 0.547 + 0.004
Adagrad 0.572 £ 0.005 1.402 +0.008 | 0.827 + 0.001 0.566 4+ 0.001

Table 5.3: Mean and standard deviation of losses and accuracies of 4-layer
networks trained on CIFAR-10 with different optimizers.

For permutation alignment, two reference networks are used: one trained
using SGD, which achieves the highest test accuracy, and another trained
using RMSprop. This is to ensure that the results are not sensitive to the
choice of the reference network. Using these references, the other networks are
reparameterized using the weight matching method. The test loss is evaluated
along linear interpolations of the aligned networks under both reference
networks, as shown in Figure 5.8.

Figure 5.8 indicates that not all reparameterized networks are linearly
mode connected to one another. While the choice of reference affects
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Figure 5.8: Test loss along linear interpolations of the reparameterized
networks trained with different optimizers on CIFAR-10. The point-wise
median value, and Q1, Q3 quartiles are highlighted in red

€, the results remain qualitatively consistent, except in the case of SGD
trained networks which curiously show a strong dependency. Using the
pairwise epsilon matrix shown in Figure 5.9, the networks trained using
RMSprop still remain the most diverse up to permutation, with low linear
mode connectivity. On the other hand, the AdamW trained networks show
stronger linear mode connectivity among themselves. Similar to the case of
MNIST-trained networks, the reparameterized networks are more connected
to the reference network than among themselves, as evident from the clear
horizontal and vertical bands at the reference index.

This result further strengthens the claim that linear mode connectivity up
to permutation is highly influenced by the training dynamics, and may not be
as ubiquitous as thought to be. Understanding this weight space dynamics
and the implicit bias of different optimizers towards the kind of minima they
converge to, remains an open question for future work.
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Figure 5.9: Pairwise e-loss between reparameterized networks trained on
CIFAR-10 with different optimizers. The colors are scaled such that the
maximum value corresponds to the maximum €. The reference network is
highlighted on the axis
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Chapter 6

Conclusions and Future work

This final chapter presents a brief summary of the report, and relates the
experimental findings to the current research on linear mode connectivity
and model averaging techniques. Some insights on possible future research
directions are also shared, along with a discussion on the ethical implications
of the work.

6.1 Summary

We introduce the intriguing phenomenon of mode connectivity in neural
networks, where the loss surface around the minima is shown to not be
isolated but connected to other minima through simple, low-loss curves.
Subsequently, we define linear mode connectivity up to permutation when
accounting for the symmetries of the fully connected network. To achieve
this, we use a heuristically motivated reparameterization method recently
introduced in the literature. With this weight matching method [AHS23]
we align a set of networks trained on datasets such as Moons, MNIST, and
CIFAR-10 to a reference, and examine the loss in the neighborhood of these
aligned networks, specifically along the line connecting pairs of networks.
Our work provides a crucial insight that while permutation alignment may
appear unnecessary for the generalization of wide network averages, this
is due to feature redundancies in the hidden layers. Therefore, weight
averaging methods aiming to improve generalization [Ram+22], or to be
used in federated learning settings [McM+17] can benefit significantly from
aligning the networks before averaging them. Current methods that do not
explicitly perform alignment [Izm+18] [I1h+22], are shown to benefit from
implicit alignment from the samples sharing their training trajectories.
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We demonstrate that permutation alignment, particularly using the
described weight matching method, may not be sufficient to ensure linear
mode connectivity. This could be attributed to methodological issues, such
as the heuristic argument that the proximity of weights in the Euclidean sense
may be enough for optimal permutation alignment. Or it is possible that
different optimizers may prefer converging to different functions, preventing
permutation alignment alone to result in linear mode connectivity. This
aligns with the current understanding in the research community that sub-
optimal minima exist in the loss surface, and it is the implicit regularization of
optimization that leads to well-generalizing models. The type of regularization
induced by different methods remains an intriguing open question. It is also
necessary to continue researching more efficient, general, and theoretically
motivated reparameterization methods [Pefi+22] that can account for network
symmetries. Regarding recent studies that connect linear mode connectivity
to mechanistic interpretations of networks [Lub+22] [Jun+22], we argue that
varying the optimization methods could serve as a valuable approach to
validate these findings.

6.2 Social, ethical, sustainable aspects

This work focuses on exploring linear mode connectivity in neural networks,
where multiple independently trained models can be averaged to combine
their capabilities. This approach holds significant promise, particularly in
the context of federated learning, where small models can be trained on edge
devices without the need to transmit or store private data on a central system.
These models can then be combined to harness the benefits of a larger dataset.
However, it is crucial to investigate whether the data can be guaranteed to
remain private or if the weights themselves could potentially lead to data
leakage. Furthermore, when models are combined, it is important to ensure
that they do not become increasingly biased. An in-depth understanding of
the loss surface of neural networks and the training dynamics of different
optimizers could lead to the development of more effective optimization
methods. This, in turn, is a key step towards reducing the energy and
fiscal costs associated with training large models, ultimately increasing the
accessibility of research communities to study the impact of scale in networks.
Such efforts contribute to the creation of more sustainable Al systems.
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6.3 Future work

Among many potential directions for further research, we highlight two
particular extensions of the presented work. The first is an extensive validation
of the results presented in this report. This study is limited to fully connected
ReL.U networks trained for classification on vision datasets. However, as with
most empirically backed claims, there are various other factors that are not
explicitly controlled for, such as different network architectures, activation
functions, and data modalities. While the choice of optimizer is shown to
impact linear mode connectivity, this is based on optimal tuning of the training
parameters. Exploring a wider range of hyperparameters is omitted due
to limited computational constraints. Another promising research direction
would be to understand how the training dynamics induced by optimization
methods affect the distribution of network weights and, in turn, linear mode
connectivity up to permutation. While it is possible that different optimization
methods converge to different types of minima on the loss surface, it may
also be possible that symmetries other than permutation dominate under some
methods.
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